Глава 1. ЭЛЕМЕНТЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ

1.2. Задачи, приводящие к экстремуму функционала

1.2.1. Задача о брахистохроне

Зарождение вариационного исчисления относят обычно к 1696 г., когда И. Бернулли поставил так называемую задачу о брахистохроне: точки А(0,0) и В(а,b) расположены в вертикальной плоскости (xy):

Какова должна быть кривая, лежащая в плоскости (xy) и соединяющая точки А и В, чтобы материальная точка, двигаясь без трения, скатывалась по этой кривой из точки А в точку В в кратчайшее время?
Искомая кривая и была названа брахистохроной.

Пусть уравнение кривой АВ есть y = u(x). Рассмотрим некоторый момент времени t, и пусть в этот момент движущаяся точка находится на расстоянии y от оси x. Тогда где v – скорость движущейся точки, g – ускорение силы тяжести. В то же время Отсюда

Обозначим через Т время, в течение которого материальная точка достигает точки В. Интегрируя, находим

Дадим более строгое определение функционала. Пусть A – множество элементов произвольной природы, и пусть каждому элементу u є A приведено в соответствие одно и только одно число J(u). В этом случае говорят, что на множестве A задан функционал J. Множество A называется областью определения функционала J и обозначается через D(J); число J(u) называется значением функционала J на элементе u. Функционал J называется вещественным, если все его значения вещественны. Функционал J называется линейным, если его область определения есть линейное множество и если

Задача сводится к следующему: надо найти функцию y = u(x), удовлетворяющую условию и сообщающую интегралу (1.1) наименьшее значение. Условия (1.2) означают, что искомая кривая должна проходить через заданные точки А и В. Такого типа условия принято называть граничными, или краевыми, так как они относятся к концам промежутка, на котором должна быть определена искомая функция.

Примером применения кривой в виде брахистохроны служит образующая цилиндрических поверхностей, используемых на детских площадках, в аттракционах для спуска с возвышения, на трамплинах.

1.2.2. Задача о наибольшей площади

Сформулируем эту задачу так: среди всех плоских кривых, имеющих данную длину и оканчивающихся в точках А(а,0) и В(b,0), найти кривую, ограничивающую вместе с отрезком [а,b] оси x область с наибольшей площадью.

Пусть уравнение кривой будет y = u(x). Задача заключается в том, чтобы найти функцию u(x), удовлетворяющую краевым условиям и тождеству и сообщающую интегралу наибольшее значение.

Общим для рассмотренных задач является то, что каждый раз ищется функция, удовлетворяющая тем или иным поставленным условиям и сообщающая экстремальное значение заданному функционалу.

Приведенные здесь задачи относятся к ветви математического анализа, называемой вариационным исчислением.

Вариационное исчисление


Глава 1.
ЭЛЕМЕНТЫ ВАРИАЦИОННОГО ИСЧИСЛЕНИЯ

Глава 2.
МИНИМУМ КВАДРАТИЧНОГО ФУНКЦИОНАЛА